Epicardial border zone overexpression of skeletal muscle sodium channel SkM1 normalizes activation, preserves conduction, and suppresses ventricular arrhythmia: an in silico, in vivo, in vitro study.
نویسندگان
چکیده
BACKGROUND In depolarized myocardial infarct epicardial border zones, the cardiac sodium channel (SCN5A) is largely inactivated, contributing to low action potential upstroke velocity (V(max)), slow conduction, and reentry. We hypothesized that a fast inward current such as the skeletal muscle sodium channel (SkM1) operating more effectively at depolarized membrane potentials might restore fast conduction in epicardial border zones and be antiarrhythmic. METHODS AND RESULTS Computer simulations were done with a modified Hund-Rudy model. Canine myocardial infarcts were created by coronary ligation. Adenovirus expressing SkM1 and green fluorescent protein or green fluorescent protein alone (sham) was injected into epicardial border zones. After 5 to 7 days, dogs were studied with epicardial mapping, programmed premature stimulation in vivo, and cellular electrophysiology in vitro. Infarct size was determined, and tissues were immunostained for SkM1 and green fluorescent protein. In the computational model, modest SkM1 expression preserved fast conduction at potentials as positive as -60 mV; overexpression of SCN5A did not. In vivo epicardial border zone electrograms were broad and fragmented in shams (31.5 +/- 2.3 ms) and narrower in SkM1 (22.6 +/- 2.8 ms; P=0.03). Premature stimulation induced ventricular tachyarrhythmia/fibrillation >60 seconds in 6 of 8 shams versus 2 of 12 SkM1 (P=0.02). Microelectrode studies of epicardial border zones from SkM1 showed membrane potentials equal to that of shams and V(max) greater than that of shams as membrane potential depolarized (P<0.01). Infarct sizes were similar (sham, 30 +/- 2.8%; SkM1, 30 +/- 2.6%; P=0.86). SkM1 expression in injected epicardium was confirmed immunohistochemically. CONCLUSIONS SkM1 increases V(max) of depolarized myocardium and reduces the incidence of inducible sustained ventricular tachyarrhythmia/fibrillation in canine infarcts. Gene therapy to normalize activation by increasing V(max) at depolarized potentials may be a promising antiarrhythmic strategy.
منابع مشابه
Effect of skeletal muscle Na(+) channel delivered via a cell platform on cardiac conduction and arrhythmia induction.
BACKGROUND In depolarized myocardial infarct epicardial border zones, the cardiac sodium channel is largely inactivated, contributing to slow conduction and reentry. We have demonstrated that adenoviral delivery of the skeletal muscle Na(+) channel (SkM1) to epicardial border zones normalizes conduction and reduces induction of ventricular tachycardia/ventricular fibrillation. We now studied th...
متن کاملSkM1 and Cx32 improve conduction in canine myocardial infarcts yet only SkM1 is antiarrhythmic.
AIMS Reentry accounts for most life-threatening arrhythmias, complicating myocardial infarction, and therapies that consistently prevent reentry from occurring are lacking. In this study, we compare antiarrhythmic effects of gene transfer of green fluorescent protein (GFP; sham), the skeletal muscle sodium channel (SkM1), the liver-specific connexin (Cx32), and SkM1/Cx32 in the subacute canine ...
متن کاملImproving cardiac conduction with a skeletal muscle sodium channel by gene and cell therapy.
The voltage-gated Na+ channel is a critical determinant of the action potential (AP) upstroke. Increasing Na+ conductance may speed AP propagation. In this study, we propose use of the skeletal muscle Na+ channel SkM1 as a more favorable gene than the cardiac isoform SCN5A to enhance conduction velocity in depolarized cardiac tissue. We used cells that electrically coupled with cardiac myocytes...
متن کاملExpression of skeletal but not cardiac Na+ channel isoform preserves normal conduction in a depolarized cardiac syncytium.
AIMS Reentrant arrhythmias often develop in the setting of myocardial infarction and ensuing slow propagation. Increased Na(+) channel expression could prevent or disrupt reentrant circuits by speeding conduction if channel availability is not limited by membrane depolarization within the diseased myocardium. We therefore asked if, in the setting of membrane depolarization, action potential (AP...
متن کاملIonic mechanisms of electrophysiological heterogeneity and conduction block in the infarct border zone.
The increased incidence of arrhythmia in the healing phase after infarction has been linked to remodeling in the epicardial border zone (EBZ). Ionic models of normal zone (NZ) and EBZ myocytes were incorporated into one-dimensional models of propagation to gain mechanistic insights into how ion channel remodeling affects action potential (AP) duration (APD) and refractoriness, vulnerability to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 119 1 شماره
صفحات -
تاریخ انتشار 2009